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ABSTRACT 

In view of the trend toward the representation of signals as 

physical observables, characterised by vectors in an abstract signal 

space, rather than as time or frequency functions, it is desirable to 

define dimensionality in a manner which would be independent of the 

choice of basis for the vectors. 

In this work, the dimensionality of a collection of signals is 

defined as equal to the number of free parameters required in a hypo- 

thetical signal generator capable of producing a close approximation 

to each signal in the collection.   Thus defined,  dimensionality becomes 

a relationship between the vectors representing the signals.   This re- 

lationship need not be a linear one. and does not depend on the basis 

onto which the vectors are projected in signal measuring processes. 

It represents a lower bound on the number of coefficients required to 

describe the  signals, no matter how sophisticated the representation 

scheme,   and thus provides an index  of  the redundancy in a   given 

representation. 

A computer program for e stimating this dimensionality from 

the signal coefficients on an arbitrary orthogonal basis is developed. 

The program, suitable for an IBM 7094 computer, is based on some 

results from a related multidimensional scaling problem, and utilises 

an inverse relationship between the variance in interpoint   distance 

lii 



within a hyper sphere, and the dimensionality of the hyper sphere. 

This method is independent of the choice of orthonormal basis« and 

no prior knowledge of the analytical form of the signals is assumed. 

The validity of the program is verified by using it to estimate 

the dimensionality of signals of known structure, and therefore of 

known dimensionality. 
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I. INTRODUCTION 

There has been a tendency in the past for authors of 

communications papers to speak of a signal synonymously with 

its representation as a time or frequency function.    Thus a 

particular signal may be designated as a "sine wave", or "square 

wave", or as a "band-limited" signal.    In more recent publications 

(1, 2) , it has been demonstrated that such an approach tends to 

obscure the true nature of signals.    In particular, it assumes 

that in the noise-free case, complete knowledge of the signal 

is possible,  while in fact the only access one has to a physical 

signal is through a measuring device, or filter, having finite 

capabilities and therefore able to yield only an approximation to 

the signal. 

To better appreciate signals  as physical observables, 

only partially accessible, it has proven useful to consider them 

as vectors,    | F>, on an abstract infinite dimensional signal 

space, V.   (Where practical, Dirac's notation, as adapted by 

Lai (2), will be followed in this report.)   In this representation, 

the signal energy is characterized by the square of the vector 

norm.      (F | F), and the structure by the vector "direction. " 

* Whole numbers in parenthesis refer to references listed 
beginning on Page 67. 



Determining a given relationship between signals» e. g. correlation, 

summation, etc., thus becomes an operation with the vectors them- 

selves, and is independent of any time or frequency basis. An 

attribute of signal collections which will be discussed in detail 

in this document is dimensionality. 

The definition of signal dimensionality is at best a 

difficult task, but several ad hoc definitions are in use, the 

most common being based on a time-bandwidth product.   Here, 

one speaks of the dimensionality of individual signals, not of 

classes or collections.   If the signal, which is specified as 

a time function, has negligible energy in the frequency components 

above B cycles per second, it will have 2B degrees of freedom 

per second.   The dimensionality of a  r second portion of this 

signal is then defined to be 2BT.   The usefulness of such a 

definition lies in the sampling theorems which permit recovery 

of the T second portion of the time function from 2BT uniformly 

spaced (in time) amplitude samples, with an error which varies 

inversely with the product BT. (3,4, 5) 

Another definition which finds frequent application 

is based on an orthonormal expansion of the signal, again 

usually expressed as a time function.   The signal is represented 

as a linear sum of weighted orthonormal components, each 

- ■■   '^' ' 



weight being the inner product of the signal with the corresponding 

component function.   The number of such components required 

to represent the signal to within a specified energy error is then 

defined to be the dimensionality.    The previous definition is 

a special case of this one, where the orthonormal components 

are shifted cardinal functions. 

Despite their usefulness,   such definitions are unsatisfying 

in view of the trend toward thinking of signals as physical 

observables rather than as functions.    It would seem more 

satisfactory to define dimensionality in terms of some 

relationship involving the vectors representing a given 

collection of signals.   Thus defined, dimensionality would 

become an intrinsic property of the collection. 

In order to obtain meaning from a signal,  some 

measurement must be performed upon it.   Such a measurement 

usually has the form of a projection of the signal vector 

onto prescribed basis vectors, or "patterns",  C <>. |,  {^o I • 

($■>{ *'"  (4>   I t which characterize the measuring apparatus. 

Since the only access an observer has to the signal is through 

these measurements, a technique must be found for evaluating 

the dimensionality of the signal collection in terms of these 

measurements. 

—i—-— — 



A.     Plan of the Report 

The purpose of this work is twofold: 

1. To suggest a generalized definition of signal- 

collection dimensionality. 

2. To develop a technique for estimating this 

intrinsic dimensionality for collections of 

signals. 

In the present chapter, the problem has been roughly 

described.   In Chapter II» this description will be extended to 

a precise mathematical formulation, and the generalized 

definition of dimensionality will be given. 

The technique for estimation of signal class dimensionality 

is based on a relationship between the dimensionality and the 

geometry of the vectors representing the signals in signal 

space.   Chapter III is in two parts.    The first part sets 

forth certain assumptions about the signal collection which 

must be valid if the estimation of the dimensionality is to be 

feasible.    The second part discusses an inverse relationship 

between the variance in interpoint distances in a hypersphere and 

the dimensionality of the hypersphere. 



■ • 

In Chapter IV, this relationship in hyperspheres is 

utilized in developing a technique for estimating the dimensionality 

of signal collections.    Nothing is assumed known about the 

signals with the exception of their spectral coefficients on 

some arbitrary orthonormal basis.   A requirement of the 

technique is that the final result remain invariant under change 

of this basis. 

In Chapter V, a computer program outline and 

simplified flow chart are given which realize the technique 

developed in Chapter IV.   To obtain the greatest generality, 

the program must be an iterative one, and its usefulness is 

predicated on the availability of a large-scale automatic digital 

computer. 

In Chapter VI, examples of the application of the 

technique to several collections of signals are given.    The 

computer used in these tests was an IBM 7094. 

Chapter VII summarizes and discusses the program and 

the experimental results. 



n. FORMULATION OF THE PROBLEM 
■ 

A common approach in the representation and analysis of a 

collection of experimentally obtained physical signals is to find the 

spectral coefficients of the signal when expanded in a set of basis 

functions   (^ (, i = 1,  2, .. .   In order to minimize the effects of 

slight numerical errors, the basis functions are required to be tin- 

correlated, for example, 
■ 

(^1 ^ > = J dt ^(t) ^(t) = kj 6^ (1) 

for all i and j in the case where the basis functions <Mt) are functions 

of tune.   For convenience, the k. are set equal to unity through 

suitable scale factors associated with the |<|>. ). 

If the orthonormal set of basis functions is complete, the 

time-function representation of a signal may be written as 

oo 

f(t)=   I kx^lD (2) 
i = i 

or 

where 

oo 

f(t) =       I    »i I *£ > O) 
i ■ 1 

aj   =    Jdt^fOfft)* (^If > 



Using a familiar signal representation concept, the signal may- 

be represented as a vector defined on a hyperspace having the $.{t) as 

a basis. (1)   The (<|).| are considered as unit vectors, and the signal 

vector IF > has coordinates a. on this basis. 

The choice of a suitable basis is somewhat arbitrary.   Provided 

that both bases are complete, that is, all of the signals be wholly within 

the subspace spanned by the bases, each signal could just as properly 

be represented by its coordinates in a second basis <\i.. 

co co 

lF>=    £     a U   > =     I    b.j^ > (4) 
i= 1 i= 1 

The vector representing the signal does not depend on the basis, rather, 

the coordinates of the vector are dependent on the choice of the basis. 

From a practical standpoint, there is much to be gained from 

selecting a set of basis functions such that a minimum of vector com- 

ponents suffice to represent the signal to within some error criterion. 

In practice,  signals to be investigated are often empirical rather than 

being given as analytical functions of time,  frequency,  or other 

variables.   The spectral coefficients of the signal are obtained by 

passing the signal through a series of filters, each "matched" to one 

of the basis patterns, and sampling at the appropriate instant as shown 

in Figure 1.   These sample values are then the projections of the signal 

in question on each of the basis patterns.    To avoid the expense of a 

large number of filters, the basis functions are chosen such that a 
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small number of basis functions spans the same subspace of V as the 

signal to within a prescribed energy error. 

The desirability of selecting the fewest numbers for represent- 

ing the signals is more basic than simple considerations of parsimony, 

however.    Consider the model for a generator of one-sided,   single- 

epoch signals shown in Figure 2. 

The output of the filter,   |F|,  is the signal which will be applied 

to the input of the n-dimensional orthonormal filter to determine the a. • 

If |F|0 > is completely unspecified, the probability that the point 

representing this signal in the n dimensional space will be within a 

hypersphere of some specified radius cannot be determined.   A 

collection of observed signals may be thought of as arising from such 

a filter which is free to vary randomly between consecutive signal 

outputs.   The points in the n-dimensional representation space will 

then be randomly distributed through the space. 

Such a model is clearly inconsistent with real world signal 

sources, which are not free to vary arbitrarily but are subject to 

definite constraints.    If the signal is noisy,  these constraints are 

"soft", the constraints becoming more well defined as the signal-to- 

noise ratio increases.    Further discussion of the effects of noise on 

this formulation will be deferred to Chapter III. 

These constraints will be reflected in the distribution of signal 

coordinates in the representation space.   For example, a maximum 
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energy restriction on the output signals. 

<F I F >iR (5) 

would require that the points in the representation space lie within a 

1/2 hypersphere of radius R 

A more realistic signal generator model which includes con- 

straints on the variations between successive output signals is shown 

in Figure 3.    The constraints are introduced as a finite number of 

filter parameters which may vary at random between signals. 

Now,  if the class of signals so generated is representable to 

within an acceptable error on a space spanned by n patterns,  the 
th 

representation of the j     signal will be of the form: 

where 

n 
•|F |0) =  Y    a.MMU. >- |e. > 

J i= 1 

«j = [^(j). ^o) \a)] 

(6) 

and |e. ) is the error in representing the j     signal. 
•I 

The number n is usually referred to as the "dimensionality" of 

the signal class.    For the purpose of this discussion, n will be termed 

the linear dimensionality of the class.    The number k will be defined 

as the intrinsic   dimensionality of the class.   The linear and intrinsic 

dimensionalities are related only by an inequality, k s n.    The value of 

n can be considerably greater than that of k, as in the case where 

11 



F.M^. *,,  t) = »|i 0)e    * t S 0 J    1      2 1 (7) 

= 0 t < 0 

• 

For arbitrary values of \\i?.  expansion of this class of signals on an 

orthogonal basis will require a great number of coefficients, while 

k= 2. 

The difference between n and k represents a redundancy in 

representation which cannot in general be removed by a linear trans- 

formation of basis. 

The problem to be considered may now be stated as follows: 

Given a collection of signals whose spectral coefficients a. on 

a basis |4>. ) are known, assume that a. = a.(9.) 

where *. = [^(j). ^2^' ' •'htÖJ J   and from these a.,  estimate the 

value of k. 

12 



HI GEOMETklCAL CONSIDERATIONS 

A.    A««umptionB 

Although the approach to be developed here is intended to 

achieve the greatest possible generality, it was found necessary to 

place three restrictions on the hypothetical signal generator: 

■,'. 

1. |F|0>/|Fq|0>       forallp/q (8) 
Mr ^ 

As previously stated, it is advantageous from an instrumentation 

standpoint to use an orthonormal basis for representing the signals 

|F   > and \T  y.   Thus the above restriction may be equivalently stated 

ai(V ^ ai(*q)       for »HP*«! (9) 

where 

Were this restriction to ^ invalid, even for Just two values of 

p and q, say p' and qf so that 

a^p.J.a^,) (10) 

then the apparent dimensionality of the collection of signals would be 

spuriously high.   The technique to be developed in Chapter IV operates 

on the locus of the signal vectors, and, for example, loops in the locus 

of vectors in the single parameter case will appear to have been produced 

by n two parameter signal generator. 

13 
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An equation of the form 

gC^,   r2....j) = 0 (14) 

is not possible here because the terms   (6  In ) in the r^'s are not n 

deterministic.    If the noise is white and has zero mean, the ^'s will 

determine the most likely coordinates of each r, and the actual 

coordinates will have a symmetric probability distribution surrounding 

this point. 

In Chapter IV,  it will be postulated that a single-parameter 

signal generator will produce signal vectors whose locus in the signal 

space V will be a curve.   The intrinsic dimensionality estimation 

technique will be based on this hypothesis.    For large S/N energy 

ratios, the noise hopefully will do no violence to this hypothesis. 

However, as the noise energy increases,  one would expect a point to 

be reached where a "threshold" effect occurred and the reliability of 

the dimensionality measurement would fall off rapidly.   In the case of 

white Gaussian noise,  this threshold should occur when the variance of 

the noise is of the order of magnitude of the least radius of curvature 

of the locus of the signal vectors r ..   Since, when finite bases are 

used, this locus may depend on the basis as well as on the signals, 

the effect of noise on the measurement cannot be predicted here. 

However, as a rough indication, the S/N ratio at which white Gaussian 

noise will have variance exceeding the least radius of curvature of the 

locus of vectors representing square pulses expanded on an orthonor- 

malized exponential basis will be evaluated in Chapter VII. 

15 



B.     Di stance s in a Hyper sphere 

At this point it is necessary to digress briefly and to 

consider the distribution of interpoint distances in an N dimensional 

homogeneous hypersphere.   This distribution was first investigated 

by Deltheil (7) and more recently by Hammersley (8) and Lord (9). 

Consider a sphere of radius a and dimension N.    Let the 

distance between two points within the sphere be designated by r, 

and for convenience let 

\ = r/2a      so that 0 ^ \ i  1. (15) 

Deltheil developed an expression for the probability density function 

for r, and evaluated thic for some odd-integer values of N.    He did 

not evaluate the cases where N was even. 

Using an involved approach, Hammersley obtained the 

following compact form of Deltheil*s expression: 

fN(\)=   ZNNX1*-1!      zijH+j.j) (16) 
i_x 

where 

yp, q) = J      ZP-VZ)^4  dZ/B(p, q) 

and B is the Beta function. 

This form is good for all values of N.    For the particular cases N= 1, 

N - 2. and N = 3, i. e., a line, a circle, and a solid sphere,  the above 

16 



expression reduces to easily handled expression«: 
■ - 

■ . 

f^K) = 2(1 - \) 

f2(X) = (i^) x[(cos"1\) - \(1-X2)1/2] 

f3(X) = 12 (2X2 - 3X3 + X5) for 0 « X ^ 1 

(17) 

Lord obtained the same results through a more general 

approach, and showed further that the distribution of distances is 

asymptotically normal as N increases, and furthermore that the 

second moment of the PDF is given by 

)?  = 2a2 N(N+ 2)'1 (18) 

From Equation 17, the mean may be calculated,  and this is shown in 
—2 Table 1, along with X   ,  (with a = 1/2 for normalisation), together 

with the variance in the interpoint distances about the mean. 

TABLE 1 Distance Distributions in Hyperspheres 

N T                   1? Variance 

1 .333333             .166666 .055556 

2 .452712              .250000 .045056 

3 .514286              .300000 . 035510 

GO .707107               .500000 .000000 

17 
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The probability denaity function« for N = 1, N s 2, and N a 3 

are shown in Figure 4.   The function is asymptotically normal and the 

variance decreases monotonically toward zero as N increases,  the 

limiting case being a 5 function at X = 0. 707107.   This result will be 

of fundamental importance in the sequel. 

18 
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IV. DISCUSSION OF APPROACH 

Consider the output of the signal generator of Figure 3 as 

projected on some orthonormal basis complete for this collection 

oo 
[F. > =    £      aj (tfj) (19) 

i=l 

where 

vU«)...*^] 
For each value of J, a point in a signal subspace having the <j>. as a 

basis will be generated, having coordinates a., a-, ... ,a  .    The locus 

of these points will reflect the value of k,  since this locus may be 

described in terms of k generalised coordinates, provided that the 

three assumptions in Chapter III are valid for the signal generator JF). 

The problem of determining the value of k is thus equivalent to determin- 

ing whether this locus is a curve,   (k = 1), a surface,  (k = 2),  or an m 

dimensional solid (k B m).   Peano's continuous mapping of an interval 

onto the whole of a square shows that the dimension of a space cannot 

be defined as the number of parameters required to describe the 

space.   (10)   That a single parameter signal generator will produce a 

curve in signal space cannot therefore be rigorously shown.   For 

continuously varying t^'s, this will be taken as an assumption under the 

restrictions imposed in the preceding chapter,  subject to experimental 

verification.   From this point on, the problem of estimating the value 

of k from the spatial distribution of the points representing the signals 

20 



will be taken to be equivalent to finding the number of generalized 

coordinates needed to describe the locus of these points. 

A related problem occurs in the field of Experimental 

Psychology, and is known as the problem of Multidimensional Scaling. 

Briefly, this problem is stated as follows: 

"Given the experimental dissimilarities of n 

objects, find a set of n points whose interpoint 

distances are a monotone function of these 

dissimilarities* (11,  12). 

A computer routine for multidimensional scaling which is based 

on the inverse relationship between interpoint distance variance and the 

dimension of a hypersphere has been written by Roger Shepard.    (12) 

This program begins with a collection of n points, P.,  P, P  • 

each representing some psychological quantity:   color perception, 

interpretation of facial expression,  etc.    The only knowledge of the 

relationship between the P. is in the form of a similarity ranking.   A 

configuration is sought such that this ranking is inversely duplicated 

by the distances between the P..    That is, if the quantities represented 

by P. and P,  are known to be quite similar,  then the distance between 

points P. and P,   should be small.    If the similarity between P. and P. 

is denoted by S., , and the distance between points P. and P,  is denoted 

by d., ,  then for all n(n-l)/2 pairs of points, the ranking of distances 

and dissimilarities is to be preserved. 

21 



Sik<SlnL^   dik>dlm <20> 

It would be expected that given only the set of inequalities 

ranking the S,., the corresponding configuration of points having the 

required ranking of d.,  would be far from unique.   Surprisingly, it 

can be demonstrated that for moderate values of n,  (n « 50), and for 

a final configuration dimensionality of 3, the resulting configuration 

is very well defined.  (13)  At the end of this analysis not only is it 

possible to obtain the proper distance ranking, but actual measurements 

of these distances as well.   That measurements can be obtained from 

non-metric ranking data is not too startling when it is considered that 

the full set of 1225 inequalities is highly redundant if the configuration 

is of small dimensionality. 

The method used is as follows:   The n points are first located 

at the n vertices of a regular n-1 dimensional simplex.    The points 

are then perturbed in directions which make the ranking of the (n -n)/2 

interpoint distances conform to the desired ranking.   Next the points 

are shifted so that d»  larger than the mean are increased, and d., 

smaller than the mean are decreased.   These two steps are iterated 

until the configuration becomes stationary.   As the iterations progress, 

the ranking is maintained, and the dimensionality of the configuration 

decreased from n to its final value. 

An anomaly in some of Shepard's results can be exploited in 

solving the intrinsic dimensionality problem.   If the configuration öf 

22 



points at some iteration in the multidimensional scaling program is 

an arc of less than 180 degrees, this will be stretched out into a line. 

Similarly, a hemispherical shell will be deformed into a plane surface. 

In the case of multidimensional scaling, this yields a spuriously low 

dimensionality for the final configuration.   In the problem considered 

here, however, this is just what is needed.   Provided that the ranking 

is not preserved over too much of the configuration at a time, curves 

inn-dimensional space collapse into lines,  surfaces into planes, and 

so forth.   The intrinsic dimensionality of the signal source thus is 

reflected as the spatial dimensionality of the final configuration.   The 

procedure consists of iterating two processes which together collapse 

the configuration of points representing the signals |F. > on the «J» basis. 

The first process increases the variance in interpoint distances. 

Consider a configuration of points in a plane as in Figure 5. 

The projections of the vector from 0 to point P. onto the X basis 

are given by a., and a., where the first subscript denotes the point and 

the second subscript denotes the basis vector. 

For an orthonormal basis, the distance between points i and j 

is given by 
1/2 

dij=tai - v2 + (ai2 - *j2)2 J (21) 

or,  in n dimensions 
n 

23 
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Let the unit vector in the X. direction be u..    Then the vector 

from P. to P. is 
• 

Xij = (ajl * 'il1 Ui + (aj2 " ai2) U2 (23) 

or,  in n dimensions 
n 

^u • I  '"jk" 'ik' "k • (^4, 

«  k=i 

Let the arithmetic mean of the d.. he 7. 

To increase the variance in the d... those distances d.. < 3"  should be 

reduced, and d.. > cT   should be increased.    This may be done incre- 

mentally as follows. 

Consider 

    =      ÄH   =   '^ exPan*ion ^actor (25) 
d " 

by which points P. and P. should be moved apart, ignoring for the 

moment all other pairs of points which include either P. or P..   It is 

desired to increase the magnitude of A.. by the factor A...    Thus the 

point P. should be moved a distance A.. d../2 in the direction - /T... 

and P. should be moved a distance A..d../2 in the direction + K... 

25 



The final coordinates for the point P. are thus given by 
J 

Aii 
aUc +   -T2   ^iv " a^)- (26) •jk" -r ^jk"aik' 

AThen the entire collection of points is considered, the shifting 

of the point P. is governed by the vector sum of the A., weighted by the 

corresponding   ^41/2, as shown in Figure 6,   In this case the final 

position of P. is 

m 

a3k+1/2    1     Sc-»lk>Aij (27> 
i=l 

where m is the total number of points. 

The second process restores the ranking of intcrpoint distances ' 
Ä 

within a small »pherical region local to each point,  of radius ß<L   To H, 

initially determine this set of inequalities consider the point P..    The ^ 

distances to each other point,  d.. for i ^ j,  are known from the calcu- 

lations for the first process.    Those points for which d.. > ß'd  are 

ignored, and for the remaining points, the interpoint distances are 

ranked.    This is repeated for each point in the collection.   In all m 

chains of inequalities are obtained, with lengths depending on the choice 

of the coefficient ß. 

ZßcT is the diameter of a hyper sphere of dimension n centered 

on the point P..    Consider the simple case where this hyper sphere 

includes 3 points, which will be designated P., P., and P..    There are 

three interpoint distances, d...  d., , and d, ..   Suppose further that 

26 



INITIAL CONFIGURATION 

d29<<,2l<d.S<d34<d24<d.4 

P2   P3 

FINAL CONFIGURATION 

Figure 6      Collap.ing of a Curve into a Line 

27 

! 

—-—   



d.. < d.. < d, ..    (78)   Since the goal of this process is to preserve this 

inequality,  but not the actual values of the cL.'s, etc., the d's are now 

replaced by the numerical values of their rank in the inequality, R ., 

where a designates the point at the hypersphere center, and b, c 

designate the two points whose interpoint distance is being ranked. 

For example,  in the case above, a = i and 

Rikj =1 iKJ (29) 
Riik = 2 

R... = 3 

For a hypersphere containing N points,  the values of R .    will run 

from 1 to (N   - N)/2 since d.. = d.. and the d.. are sero and not ranked. 

The value of a runs from 1 to m. the number of points in the collection. 

Once the initial values for the R's have been determined, the 

hyper spheres will no longer be required and all further calculations 

will use the same values of b and c for each a. 

After each iteration of the variance-increasing process,  the 

ranking procedure is repeated, i.e., for the example where 

R.j. - 1. R..,  = 2, and R... = 3, the distances between points are 

computed and ranked after the variance-increasing shifts have taken 

place,  and these ranks are designated R'.*..  Riiw and R'....   If within 

the i     chain of inequalities no violations of the original ranging   have 
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occurred. 

Rikj = Ri^ = * 

Riik = Riik = 2 

Riij     =Riij    =   3 

(30) 

If,  on the other hand, the inequalities no longer hold, then for at least 

two pairs of points R f* R».    The more violent the scrambling of the 

iner 'alities. the greater will be the difference R - R'.   This difference 

will be symbolised by 

A v^v-*«^ (31) 

where y is a constant. 

When D.„ ■ 0, the ranking of the interpoint distance d.. is correct. 

For positive integer values of D.», the distance between points P. and 

P, is too great, and for negative values it is too small.   The procedure 

for restoring proper ranking is very similar to that used to increase 

variance,  except that - D...  will be used ii place of A...   The minus 

sign arises as a simple consequence of the definition of D.., .   Also, 

an additional summation will be needed to accommodate the extra 

subscript. 

Consider a pair of points, P. and P. within a hyper sphere of 

radius ß?  centered on point P. before the first iteration.   To tend to 

restore the distance between P. and P. to its proper rank in the i th 

29 
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inequality chain, the coordinates for the point P. are shifted from a.. 

to 
Dijk 

ji - -r- hi ■ aki> <32> 

In the event that the interpoint distance d.. is out of place in 

several of the inequality chains, the i subscript will be summed over 

the collection of points.    This yields as the final set of coordinates for 

point P., 
y 

o D 
(33) 

1  = 1 

This yields the final position of P. provided that only its distance 

from P,  is considered.   In the desired application, the distances from 

other points must be considered as well, and the shifting of P. will 

depend on the vector sum of all possible D's.   This vector sum is 

taken in the same way as in the variance increasing process, and the 

required final position for P. is given by: 

mm rj 

For each value of i. there will be many values of k and j for 

which D., . is not defined because either point P.  or P.,  or both, lie 

outside the initial hypersphere of radius ß <I.   To facilitate computation, 

these D., . will be defined to be zero. 
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Iterating these two processes should eventually lead to a 

configuration which no longer changes, the two processes cancelling 

out.   Further iterations may rotate the configuration, but the "shape* 

should remain fixed, as should the variance in interpoint distances. 

Once the final configuration has been obtained, it remains to 

identify the linear dimensionality of this configuration.   A method for 

doing this is based on two theorems from matrix theory.    (14) 

Theorem 1     The rank of a normal matrix is equal to the 

number of non-zero eigenvalues possessed by the matrix. 

Theorem 2    The rank of any Gramian matrix of vectors is 

equal to the linear dimensionality of the space spanned by the 

vectors.   Combining these theorems yields: 

Corollary      The linear dimensionality of the space spanned 

by a set of vectors is equal to the number of non-zero eigenvalues 

possessed by the Gramian matrix. 

In the case of a matrix whose elements are inner products, 

the requirement that the matrix be normal and positive semidefinite 

is automatically filled. 

The remaining part of the procedure to be followed is as 

follows: 

Starting from any point j, calculate the matrix of inner products 

of vectors from that point to every point in the configuration 

<rjkl'ji>=b,kiO> 
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The number of non-zero eigenvalues of this matrix will then be 

equal to the linear dimensionality of the configuration,  and therefore 

will be equal to the intrinsic dimensionality of the original collection 

of signals.   Taking into account that |r.. >5  0, and that 

< W= <;ji,rjk> 
',■ ■  ■ 

the matrix B* is 

<rjllrjl><?j2lrjl>--0--<7jmirjl> 

0 0 . ..0. 

0. ..<r.   |r.   > jm1 jm 

i B» 

(35) 

Pa 

a 

The equation to be solved is 

B« - I\ = 0 (36) 

For m signals projected on an n dimensional basis, at least 

(m-n) of the X's so obtained must be zero.   This will be verified in 

Chapter VI.    Of the remaining n eigenvalues, k will be non-zero. 

The matrix B* will of course be different for different choices of the 

j     point,  but the final number of non-zero eigenvalues, k, will be 

constant.    Several standard techniques for finding eigenvalues of 
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symmetric matrices are available.   The technique ueed in this work is 

a variant of Jacobi's method.   During the variance maximising process, 

the centroid of the configuration, C, is not constrained.   This is of no 

consequence as far as the final dimensionality is concerned, but it is 

convenient that the centroid of the configuration be used as the origin 

of the vectors rather than arbitrary point j.   A formula which can be 

used to calculate the inner product matrix, using the centroid as the 

vector origin is given in Equation 37.    (15) 

m m »-1      jn 

j = 1 k = 1 j = 1   k=j+i J 

(37) 

where:    b.,  = element of matrix B of scalar products 

referred to centroid 

d.,   « distance between j     and k    point 

m ■ total number of points in the configuration. 

It is now possible to set forth an outline for a computer program 

which will accept the coefficients of a collection of signals expanded on 

any basis, and from these coefficients estimate the intrinsic dimension- 

ality of the collection. 
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V. OUTLINE OF COMPUTER ROUTINE 

Step Number Step De«crlption 

1 Set values for a,  ß, y,  and e.   Note:  a 

determines the rate at which the interpoint 

distance variance increases; P defines the 

region about each point over which interpoint 

distance ranking is to be preserved; y deter- 

mines the vigor with which the program 

resists inequality violations; and c sets the 

stopping criterion. 

2 Read in coefficients of signals expanded on ^ 

some orthonormal basis.   Coordinates of the                        ^ 

j     signal on the k    basis vector ■ a., where                      *t 

3 = 1,  2, . . .m; k = 1,  2,...n. 

Calculate interpoint distances 

"«'[^«»Uc-V2] <"> 

Calculate the arithmetic mean of d.. s 7 

m 
3  =     I       I     d   /(m2 - m)       (40) 

i=l   j^l 

M 



  

Step Number Step Description 

5 Normalize data to make 7=1. 

6 Compute variance in normalised d.. = VAR 

7 VARO ■ variance from previous iteration. 

| VARO - VAR | < c ? 
Yes.  go to step 20.   No,  go to step 8. 

8 First iteration ? 

Yes,  go to step 9, No, go to step 11. 

9 For each point i,  store numbers of point j. 

k such that both d.. < ßcT and d.. < 03. 

djj s  0,  «I = 1 by 5.     (See Figure 7) 

10 Rank all possible pairs of points obtained 

in step 9 in decreasing order of d... and 

calculate RIM.' 

11 Calculate A.. 

A^ofdy-H^oCdy - 1). 

(25) 

12 Compute new coordinates. 

m 
ljk-*ajk + ll    (ajk-aik)Aij 

i= 1 

(27) 

13 Compute new values of d... 
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Step Number Step Description 

14 Compute new value of 3. 

15 Normalise a.. *■ to »et new 3=1. 

16 Compute R.'^- 

17 Calculate Dijk = Y(Rijk - R{jk) (»«) 

18 Compute new coordinate*. 

m      5?      D 

"ji-'ji-J^-^hi-'ia* 
(34) 

19 Return to step 3. 

20 Calculate B matrix 

m m 

m-1       m 

-II    I    *jk-^k] 
j=l   k = j+l 

(37) 

21 Find eigenvalues of B, using the method of 

Jacob!.    This is a standard subroutine. 

22 Write out final coordinates,  D matrix, 

B matrix. 
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Step Number 

23 

Step Deicriptlop * H* 

i 
Write out eigenvalues of B. 

• • \,; ■ ,  "n 
24 End. 

A simplified flow chart for this program appears in Figure 8. 

•• 
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I READ IN M. N "| 

[       READ IN A(I,J)     ""1 

i 
READ IN ALPHA, 

BETA, QAMA. EPSILON 

|    WRITE OUT A(I,J)     j r 
i   CALCULATE O(I.J)     I r 
I   CALCULATE   OBAR     1 

T 
iDd.J) ■0(I.J)/OBAR    I 

i 
I   CALCULATE   VARN "~| 

STORE ALL   I, J 
FOR   WHICH 

DII.J) <   BETA 

CALCULATE R(t, J. K) 

I 
IWRITE OUT R(I,J. K)l 

CALCULATE NEW 
COORDINATES PER 

STEP NO. 12 

I 
CALCULATE 

RPRiME(ltJ.K) 

! I . 
| CALCULATE  D(I.J, K)] 

CALCULATE NEW 
COORDINATES PER 

STEP NO. IS 

WRITE OUT 
RPRIME (I.J.K) 

. I , 
I     WRITE OUT VARN      j 

I WRITE OUT   Ad.J) I 

V 
[CALCULATE B(ltJ) | 

CALCULATE 
EIGENVALUES 

I 
WRITE OUT 

EIGENVALUES, 
B(I.J), D(I.J) 

END 

Figure 8      Simplified Flow Chart 
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VI. EXPERIMENTAL VERIFICATION 

The program previously outlined was compiled from Fortran 

statements on an IBM 7094 digital computer.    This chapter describes 

the results obtained for several examples of one and two-dimensional 

signal collections.   In all cases, the basis used consists of one-sided, 

real, decaying exponentials, orthogonalized on the interval 0 - oo.   The 

exponents in the basis are -t,  -2t,   -3t,   -4t,  and -5t.   These exponen- 

tials may be orthogonalized by either Schmidt's method or the method 

of Kautz.    (16)   In the time domain,  the resulting orthonormal basis 

is described by Equation 41. 

<<>! = (2)1/2 (e"*) u(t) (41) 
Hi 

4>2 = M)1/2 (-Ze"* + 3e'2t) u(t) K 

4)3 = (6)1/2 (Be"* - 12e"2t + 10 e"3t) u(t) g 

<J,. = (8)1/2 (-46'* + 30e"2t - 60e"3t + SSe'4*) u(t) 

«(>_ = (10)4/2 (Se'' - 60e"2t + 210e"3t - ZSOe"4* 

+ 126e'5t) u(t) 

or equivalently. 

•l<"' ITT   ■  <2'1/2 

r ^       nr T1/2 <42) 

fornjl i 
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This basis will be referred to as the Kautz basis in the remainder of the 

paper.    The Kautz basis was chosen for the tests because of the ease 

with which the coefficients oi signal expansions may b» computed. 

The signals used are of two types: 

1. Rectangular pulses 

2. Decaying real one-sided exponentials 

1. 

«-t-* 

2. 

All signals are of the single epoch type.   Inner products of the Kautz 

basis with the two basic signals used in testing this program are 

tabulated below. 

1.   8(t) = n{t), the unit step beginning at t = 0 

a^ <<l»1Is> = 1.414 

a2= <?2|s> = -1.000 

a3= <*3!s> = .815 

a4= <*4I»> = -  .707 

a, = ((frjs) = .632 

(43) 
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2.    8(t) = u(t-T), the unit step beginning at t & r 

All    -T 
1 = U) '*• 

4/2 f>-T _ ,/, ^-2T a, = -(4)a^ (2e-T - 3/2 e 

a3 = (6)1/2 (3e-T - 6e-2T + 10/3 e-3T) 

a4 = -(8)1/2 (4e-T - 45e-2T + 20 e-37 - 35/4 e-4T) 

a5 = (10)1/2 (5e-T - 30e-2T + 70e-3T - TOe"47 + i2!    e"57) 

3.    s(t) = e"     u(t), the one sided decaying real exponential 

having epoch at t = 0. 

al   = (2)      (  TTeT) 

a2 =<4>1/2< fru^TT^ 

a3 - ^    ( rra, -  m    + mr ) 

.Q.l/2 ,      -4   .  . 30 60 , 35     . a4 = (8,    ( rrr'+ -TTTS.    " TTZ   + TTH ' 

«MO»1/2 I       5     ^ 60        .    210 280       .126 a5   = (40)       (   rrs'   " TTcT    + TTS.     -    T+-a   + 3+d , 

In the initial runs, a cutoff limit of 20 iterations was written 

into the program to insure against excessive wasted time in tlie event 

that the configuration did not converge. 

• 
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As was stated in Chapter IV. the matrix equation 

B« - IX = 0 (36) 

CD 

has m eigenvalues,  of which at least (m-n) should be zero.   As verifi- 

cation that this part of the program was correct,  a collection of 20 

random decaying exponentials was expanded on the Kautz basis, and the 

B matrix was calculated directly from this input data, without the 

collapsing operation being performed.    The total number of eigenvalues 

so obtained should have been 20, of which 15 should have been zero. 

The eigenvalues calculated are shown in Table 2. 

TABLE   2 

Eigenvalues 

1. 7.33867 11. 0.00000 

2. 1.93994 12. 0.00000 

3. 1.49168 13. 0.00000 

4. 0. 32322 14. 0.00000 

5. 0.14997 15. 0.00000 

6. 0.00000 16. 0. 00000 

7. 0. 00000 17. 0.00000 

8. 0.00000 18. 0.00000 

9. 0.00000 19. 0.00000 

10. 0. 00000 20. 0.00000 
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This proved to be the case in every run, that is, eigenvalues 6 to 20 

were always zero.   Therefore,  in the examples to follow,  only the 

first five eigenvalues are shown. 

In Chapter IV, the postulate was put   forth that a single 

parameter class of signals should generate a locus of points in signal 

space which describes a curve.    To gain some insight into the shape 

such a curve might have,  a set of 20 rectangular pulses was expanded 

on the Kautz basis.   The pulse width was varied from 0. 1 to 2. 0 

seconds,  and the height was held constant at unity.   It is,  of course, 

not possible to depict the resulting curve on a single plot,  but three 

projections of the curve,  on the fyj-fy?'  $7'^4' and t^c ^2~ ^5 PlaneB 

are shown in Figures 9,  10, and 11.   These projections show the 

great nonlinearity of the curve, and also indicate that about a 10 to 1 

signal to noise energy ratio might be expected to cause the program 

to collapse the configuration to a line. 

In the examples to follow,   signals of one or two parameters 

were expanded on the Kautz basis, and their intrinsic dimensionalities 

were determined by the program.    The same set of control parameters, 

a,  ß,  Y, and   c   were used in all cases.   Examples 1 and 3 were 

single parameter classes of signals, while Examples 2 and 4 had two 

independently varying parameters.    Example 5 shows the effect of 

dependence in the variation of two parameters.   It is essentially the 

same clast  of signals as in Example 2, but the program identifies it as 

a single-parameter class due to the dependent parameter variation. 
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A.    Example 1 

■ 

Signal used - Rectangular pulses of unit amplitude with width r 

varied from 0.1 to 2. 0 seconds in equal steps.    (This is the signal 

collection depicted in Figures 9.  10, and 11)   20 signals. 

Parameter values:       a = 0. 05 y = 0. 04 

P = 0.75 e = 0.005 

Number of iterations required = 8 

Running time = 3 hundredth« hour 

Eigenvalues obtained:       35.914352 
.000008 

.000000 

.000000 

.000000 

48 



EXAMPLE 1 ■ 

Coefficient a on Kautz Basis 

Signal 
Number al a2 a3 *4 *5 

1 .1346 .1632 .1514 .1116 .0578 

2 .2564 .2640 .1707 .04165 -.0582 

3 .3665 .3168 .1188 -.0649 -.1230 

4 .4662 .3333 .0352 -.1453 -.1044 

5 .5564 .3225 -.0557 -.1800 -.3306 

6 .6381 .2917 -.1395 -.1710 +.0521 

7 .7119 .2466 -.2083 -.1289 .1226 

8 .7788 .1916 -.2588 -.0663 .1638 

9 .8392 .1304 -.2905 .0052 .1722 

10 .8940 .0655 -.3043 .0763 .1514 

11 .9435 -.0009 -.3023 .1405 .1086 

42 .9883 -.0674 -.2866 .1937 .0523 

13 1.029 -.1327 -.2599 .2336 -.0098 

14 1.065 -.1960 -.2243 .2597 -.0712 

15 1.099 -.2568 -.1822 .2721 -.1268 

16 1.129 -.3147 -.1352 .2721 -.1734 

17 1.156 -.3694 -.0852 .2611 -.2092 

18 1.180 -.4208 -.0335 .2408 -.2334 

19 1.203 -.4688 +.0189 .2128 -.2460 

20 1.223 -.5136 +.0709 .1789 -.2479 
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B.     Example 2 

Signals used - Rectangular pulses with both amplitude, A, and 

width, T. varied as shown below: 

Signal 
Number _T A_ 

Signal 
Number T A^ 

1 0.1 0.6 11 0.1 1.0 

2 0.4 0.6 12 0.4 1.0 

3 0.7 0.6 13 0.7 1.0 

4 1.0 0.6 14 1.0 1.0 

5 1.3 0.6 15 1.3 1.0 

6 0.1 0.8 16 0.1 1.2 

7 0.4 0.«» 17 0.4 1.2 

8 0.7 0.8 18 0.7 1.2 

9 1.0 0.8 19 1.0 1.2 

40 1.3 0.8 20 1.3 1.2 
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Parameter Values: a = 0. 05 y = 0.04 

p=0.75 c = 0.005 

Number of iterations required = 5 

Running time = 3 hundredths hour ,   

Eigenvalues obtained:       27. 56159 

1.19406 

. 00001 

. 00000 

. 00000 

D 

* 
« 
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■ 
II 

EXAMPLE 2 

Coefficients on Kaut« Basis 

Signal 
Number al a2 a3 a4 a5 

1 .0808 .0981 .0909 .0670 .0347 

2 .2780 .1995 .0212 -.0872 -.0627 

3 .4275 .1484 -.1250 -.0774 .0726 

4 .5360 .0393 -.1827 .0458 .0909 

5 .6170 -.0795 -.1559 .1401 -.0059 

6 .1078 .1306 .1211 .0893 .0462 

7 .3730 .2666 .0282 -.1162 -.0835 

8 .5695 .1975 -.1666 -.1031 .0981 

9 .7152 .0524 -.2434 .0610 .1211 

10 .8232 -.1062 -.2079 .1869 -.0078 

11 .1346 .1632 .1514 .1116 .0578 

12 .4662 .3333 .0352 -,1453 -.1044 

13 .7119 .2466 -.2083 -.1289 .1226 

14 .8940 .0655 -.3043 .0763 .1514 

15 1.029 -.1327 -.2599 .2336 -.0098 

16 .1616 .1961 .1818 .1340 .0694 

17 .5560 .3990 .0423 -.1744 -.1253 

18 .8550 .2968 -.2500 -.1547 .1471 

19 1.072 .0786 -.3655 .0916 .1818 

20 1.234 -.1591 -.3119 .2802 -.0119 

CO 
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C.    Example 3 

Signals used - Real decaying one-sided exponentials of unit 

amplitude     ^^ -dt 

-I    varied from 0.1 to 2. 0 seconds in equal steps.   20 signals. 

Parameter Values:        a = 0. 05 -y = 0. 04 
P=0.75 € = 0.005 

Number of iterations required ■ 8 

yr,' Running time = 4 hundredths hour 

H Eigenvalues obtained:        38.517118 
V .000010 

.000000 

.000000 

.000000 
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EXAMPLE 3 

Coefficients on Kautz Basis 

Signal 
Number al a2 a3 a4 a5 

4 .12856 .1364 .1030 .0594 .032 

2 .2357 .1905 .0874 .022 .003 

3 .32636 .2019 .0522 .001 0. 

4 .40405 .1905 .0210 -.001 0. 

5 .4714 .1667 0. .0003 0. 

6 .53033 .1363 -0.012 .0020 0. 

7 .58232 .1029 -0.016 .0045 0. 

8 .62853 .06840 -0.015 .0065 0. 

9 .66990 .03380 -0.0091 .0040 0. 

10 .70711 0. 0. 0. 0. 

11 .74078 -.0327 0.011 -0.0051 0. 

12 .77139 -.0642 0.024 -0.0120 0. 

13 .79934 -.0942 0.0377 -0.0210 0. 

14 .82495 -.1228 0.0519 -.0291 0. 

15 .84853 -.1500 0.0669 -.0385 ,03 

16 .87028 -.1758 0.0816 -.0478 .03 

17 .89043 -.2004 0.0968 -.0591 .06 

18 .90914 -.2236 0.1110 -.0696 .06 

19 .92655 -.2457 0.1260 -.0795 .06 

20 .94281 -.2667 0.1400 -.0897 .06 
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D.    Example 4 

Signals used - Real decaying one-sided exponentials with 

decrement and amplitude varied as shown below. 

Signal 
Number d A_ 

Signal 
Number d A 

1 10 0.6 11 10 1.0 

2 2.5 0.6 12 2.5 1.0 

3 1.5 0.6 13 1.5 1.0 

4 1.0 0.6 14 1.0 1.0 

5 .75 0.6 15 .75 1.0 

6 10 0.8 16 10 1.2 

7 2.5 0.8 17 2.5 1.2 

8 1.5 0.8 18 1.5 1.2 

9 1.0 0.8 19 1.0 1.2 

10 .75 0.8 20 .75 1.2 
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! 

Number of iterations required = 5 

Rurming time = 3 hundredth* hour 

Eigenvalues obtained:       44.8376 

.1519 

.0010 

.0000 

.0000 

Parameter Values: o = 0.05 y = 0.04 

ß= 0.75 c« 0.0005 

N 

o 
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EY.AMPLE 4 

Coefficients on Kautz Basis 

Signal 
a1 a2 a3 a4 a5 Num.ber 

1 . 0772 . 0818 . 0618 . 0356 . 0192 

2 . 2425 .1143 . 0126 - . 0006 0 . 

3 .3494 . 0617 -.0096 . 0027 0 . 

4 . 4243 0. 0. 0. 0 . 

5 . 4796 -.0565 . 02 26 - .0126 0 . 

6 .1029 . 1091 . 0824 . 0475 . 0256 

C":! 
t;J:J 7 . 3233 .1524 . 0168 -.0008 0. 
~ 

:--:-.. 8 .4658 .0823 -.0128 .0036 0 . 

0::: 9 . 5657 
~ 

0 . 0. 0 . 0. 

10 . 6394 - . 07 53 . 0302 -.0168 0 . 

11 . 1286 . 1364 .1030 .0594 . 0 320 

12 . 4041 .1905 . 0210 - . 0010 0 . 

13 . 5823 .1029 - .0160 .004 5 0. 

14 . 7071 0. 0 . 0 . 0 . 

15 . 7993 -.0942 . 0377 -.0210 0. 

16 . 1543 .1636 . 1236 . 0712 . 0384 

17 . 4849 .2286 . 0252 -.0012 0 . 

18 . 6988 . 1235 -. 01 92 . 0054 0. 

19 . 8485 0. 0 . 0 . 0 . 

20 . 9592 -. 1130 . 0452 -.0252 0 . 
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E.    Example 5 

Signals used - Rectangular pulses with both amplitude and 

width varied, but with 7=2 sin A, and r varied from 0.1 to 2. 0 

seconds in equal steps.   20 signals. 

Parameter Values: a = 0. 05 y = 0.04 

ß = 0.75 e = 0.005 

Number of iterations required « 8 

Running time = 4 hundredths hour 

Eigenvalues obtained:   41.03028 
.00001 ga 

.00000 .A 

.00000 

.00000 a 
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EXAMPLE 5 

• Coefficient s on Kautz Basis 

• 

Signal 
Number al a2 a3 a4 a5 

1 .0067 .0082 .0076 .0056 .0029 

2 .0256 .0264 .0171 .0042 -.0058 

3 .0553 .0478 .0179 -.0098 -.0186 

4 .0942 .0673 .0072 -.0294 -.0211 

5 .1408 .0816 -.0141 -.0455 -.0836 

6 .1946 .0889 -.0426 -.0522 -.0169 

CD 7 

8 

.2549 

.3201 

.0883 

.0788 

-.0746 

-.1064 

-.0462 

-.0272 

.0439 

.0673 

9 .3911 .0608 -.1354 .0024 .0803 

10 .4681 .0343 -.1593 .0400 .0793 
• 

11 .5501 -.0005 -.1762 .0819 .0633 

12 .6365 -.0434 -.1846 .1247 .0337 

13 .7275 -.0938 -.1837 .1652 -.0069 

14 .8243 -.1517 -.1736 .2010 -.0551 

15 .9309 -.2175 -.1543 .2305 -.1074 

16 1.045 -.2914 -.1252 .2520 -.1606 

17 1.174 -.3750 -.0865 .2651 -.2124 

18 1.322 -.4713 -.0375 .2697 -.2614 

• 19 1.508 -.5877 .0237 .2668 -.3084 

20 1.921 -.8068 .1110 .2810 -.3894 
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These results are in complete agreement with the "correct" 

results.    Cases 1 and 3. the single-parameter cases, produced single 

non-zero eigenvalues.    Cases 2 and 4. with two independently varying 

parameters, produced two non-zero eigenvalues.    Case 5, with two 

varying parameters, produced a single eigenvalue.    This is in agree- 

ment with the discussion in Chapter III,  Equation 12. 

to 

0> 

60 



VII.        DISCUSrION 

A.    Effect of Computer Parametera 

The discussion and outlining of the computer program in 

Chapters IV and V avoided comment on the effects of the parameters 

a,  ß,  and -y on the final results.   A few such comments follow.    Of 

course, the values of these "constants* will depend to an extent on the 

input data,  and since this cannot be predicted,  some adjustment may 

be necessary during the computation.    From Shepard's experience 

with the Multidimensional Scaling problem,  (13) a few indications as 

to reasonable starting values for a and y were obtained.   The value of 

ß had to be considered separately,  as nothing in multidimensional 

scaling corresponds to ß. 

1. Alpha 

a determines the rate at which the interpoint distance 

variance increases, or,  equivalently by Equation 16, the rate at which 

the dimensionality of the configuration decreases.    Large values of a 

collapse the structure more rapidly,  but unfortunately also do violence 

to the ranking of distances within the inequality chains.   It is therefore 

prudent to use small values for a,  and a few more iterations.    To this 

end,  Shepard used program parameter values corresponding to values 

of a from 0. 01 to 0. 05.    Since the goals of the program described here 

and Shepard's program are widely different, a one-to-one correspond- 

ence in parameters does not exist,  and the values a = 0. 01 to 0. 05 

should be used only as a starting point.   For the 20-signal examples 
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of Chapter VI,  a = 0. 05 was satisfactory, although this may be too 

high if more than 20 signals are included in the collection. 

2. Gamma 

Asa striking example of the danger in blindly using 

Shepard's parameter values, consider y, the parameter determining 

the vigor with which the program resists inequality violations. 

Shepard uses 0. 2 for this parameter, while in the intrinsic dimen- 

sionality program,  instabilities resulted if -y exceeded 0. 05.    In 

multidimensional scaling,  only one chain of inequalities is used, while 

here the number varies as an inverse function of ß.   The result is 

that an inversion of rank in any one chain of inequalities is likely to 

occur in several others.    This will multiply the effect of y several 

times, and since -y is a feedback parameter,  instability may result if 

Y is not held to a low value,   y = 0.04 proved satisfactory for the 

experimental work in Chapter VI. 

3. Beta 

Now the second parameter,  ß, is more difficult to discuss. 

Perhaps the best way to approach it is to look at an analogy rrith. a 

parameter in "clustering" problems.  (17,  18)   Young,  in performing 

an analysis on a collection of signals, considers their first-order 

correlations, and forms a cross-correlation matrix,  symmetric with 

I's on the diagonal.   If any element exceeds a threshold, it is replaced 

by unity, if not, with zero.   All further work is then done with this 

matrix.   Thus the matrix,  and hence the clusters obtained,  depend 
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heavily on the choice of threshold. All that Young could suggest was 

that if N is the number of clusters obtained and 71 was the threshold 

0 < 71 < 1, then if the function N( 71) showed small values of first 

derivative for a wide range of 71, then the threshold should be put in 

this :range. 

Now, a similar phenomenon will be observed as the value of 13 

is varied. For very small 13, each chain of inequalities contains only 

a few distances to be ranked. The configuration is very loosly defined 

and may collapse into a line no matter what t he original configuration . 

On the other hand, large values of 13 place nearly every possible 

distance, d .. , in each chain. From Shepard's results this means 
lJ 

that the program would repeatedly reproduce the original data with no 

collapsing. 

This may be thought of as arising from the discrete nature of 

the input data. Through any finite collection of points in space, many 

curves, surfaces, etc . , may be passed. The problem is one of 

finding a "best" number of dimensions for a discrete collection 

in the sense that as the number of signal samples increases and the 

collection of points begins to approximate a continuum, it is desired 

that the dimensionality of that continuum be the same as the "best" 

e stimatc. One approach is to follow Young, and determine whether 

the value of k is invariant under a wide variation of 13. If so, the 

midpoint of this range of 13 should be used, and the :r'esulting value 

of k taken as the best estimate of the true value . In this manner, the 

value of 13 for the examples of Chapter VI was set at 0, 75 . 
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B. Future Work 

Extensions of this work are needed in several areas . The 

first of these is the study of the effect of noise added to the input data. 

This was briefly discussed in Chapter ill, but a complete investigation 

has not been undertaken. It is expected that a threshold effect will 

occur when additive noise is present in the data, and both theoretical 

and experimental work should be performed to verify or disprove this 

supposition. Various probabilit y distributions for the noise should be 

considered, as well as the relationship between signal-to-noise ratio; 

number of signal samples; and frequency of errors in estimating 

dimensionality. 

Another area of needed research involves A~sumption 2 of 

Chapter ITI, Equation 11. This is the assumption which involves a 

complete independence of the parameter variations in the signal 

generator. It has been stated that independent variations will yield the 

correct results, while two parameters which re functionally dependent 

will appear to the computer program to be a single parameter, thus 

.reducing the apparent dilnensionality by one . No mention has been 

made of a possible statistical relationship between two parameters. 

This would be the case where the statistics of thP- variation of one 

parameter are modified in accordance with the value of a second 

parameter . Errors here would depend on the correlation between the 

two variations, and an investigation of such errors would be of value. 
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Another important area for more work is the question of 

stability of the computer program.   As previously mentioned, ß is a 

feedback parameter, and wherever feedback is involved, the stability 

problem arises.   In early runs with the program described here, 

convergence was not obtained.   A reduction in the value of beta 

corrected the situation, and convergence was obtained.   A means 

for eliminating this trial-and-error process, or at least automating 

it, would be of value.    Excessive values of ß resulted in divergence 

of the configuration, accompanied by a sharp decrease in the interpoint 

distance variance.   This decrease was monitored,  and when it occurred, 

the program was stopped.   It may be possible to continuously monitor 

3 the variance changes from one iteration to the next,  and modify ß as 

' the computer run progresses.    This is only an ad hoc approach. 

*4 however, and a full investigation of stability criteria would result in 
':■§ 

the saving of considerable computer time which must be wasted now 

before a satisfactory value for ß is established for each set of data. 

Such an investigation should be carried out in conjunction with the 

additive noise investigation because the stability of the program will 

almost certainly be dependent on the noise present in the input data. 

Of course, the most important future work with this program 

will be in applying it to actual signal analysis problems.   A few such 

problems are suggested in the conclusion. 
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C.    Conclusion 

A definition of the intrinsic dimensionality of a 

signal collection has been formulated, and a computer program 

capable of evaluating this attribute of the collection has been 

written and evaluated.   The program for making these 

estimations has several advantages over the conventional 

linear signal analysis techniques. 

1. It uses the data points themselves, not an 

inferred continuous plot. 

2. It is insensitive to changes in the basis on which 

the signals are projected. 

3. It assumes no prior knowledge of the signals, 

except that most of their energy can be 

represented on the basis used. 
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